

IN THE ARAB COUNTRIES

UNDER THE THEME "MANAGING MAINTENANCE WITHIN INDUSTRY 4.0" CONICIDE WITH THE 16TH ARAB MAINTENANCE EXHIBITION

Smart maintenance by using data analytics during industry 4.0

By

Dr. TRINATH SAHOO

What will be discussed

- Industry 4.0 concept.
- ✤ what is data analytics.
- ***** Use of data analytics for machine prognosis .
- ✤ Question and answer.

Industry 4.0

Building blocks of Industry 4.0

Industry 4.0

Internet of Things and Big Data

What is the Internet of Things

Devices with electronics and sensors connected to the public telecom network and the internet.

Big Data

Large data sets that may be analyzed computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions.

The size of the data is not important • Ability to analyze the data, make informed decisions and take action .

The Industrial Internet of Things

IoT + Big Data = Industrial Internet

Internet of Things and Big Data

Explosion of low-cost sensor technologies has made every manufacturing process and component a potential data source.

*****Ford: Placed sensors on virtually every piece of production equipment for its River Rouge facility.

♦ GM: Uses sensors to monitor humidity conditions during vehicle painting; if unfavourable, the work piece is moved elsewhere in plant or ventilation systems adjusted.

***** Raytheon: Keeps track of how many times a screw has been turned in its factories.

*Merck: Improves vaccines by conducting up to 15 billion calculations to determine what environmental and process factors influence quality of final product

IoT-enabled remote diagnostics Navistar

To help fleet and vehicle owners move from a reactive approach to a more predictive model, Navistar needed to analyze a wider range of data in real time.

Navistar built an IoT-enabled remote diagnostics platform, called OnCommand.

The platform brings in over 70 telematics and sensor data feeds from more than 300,000 connected vehicles including engine performance, truck speed, acceleration, coolant temperature, and brake wear.

This data is then correlated with other Navistar and third party data sources, including meteorological, geolocation, vehicle usage, traffic, historical warranty, and parts inventory information.

Navistar has helped fleet and vehicle owners reduce maintenance costs by up to 40 percent.

Internet of Things and Big Data

IoT and bog Data will generate 4 primary forms of value in terms of manufacturing processes:

Operating Efficiency;
Predictive Maintenance;
Supply Chain Management;
Inventory Optimization.

BIG DATA

Is a new paradigm that represents the search for solutions to store and analyze structured and unstructured data together for an affordable and scalable data mode.

PREDICTIVE ANALYTICS

A variety of statistical techniques from modeling, machine learning, and data mining that analyze current and historical facts to make predictions about future, or otherwise unknown, events.

PROGNOSTICS

Algorithms to detect interesting patterns in data. Statement about the way things will happen in the future

Case study

PARAMETERS

•Safety

•Condition monitoring

-early failure detection-wear monitoring-integration and analysis of process data

•Efficiency optimisation.

Compressor Data

Safety Crank Angle Related Vibration Signal.

Messages from the system must be created .Modern communication systems like e-mail, short message service (SMS), .are used to transport the information to the responsible people in time, no matter where they are when the event occurs.

Dynamic Load - Combined

Exceeding Rod Load

1> Comp 5 H Pressure, R=3, LS=5, C=2

2> Comp 5 C Pressure, R=3, LS=5, C=2

Early Failure Detection

Figure shows crosshead vibration, dynamic pressure crank end, dynamic pressure head end, and rod position during one cycle of the machine. The machine is in good condition.

The vibration signal in Figure shows a drastic change near top- dead-center; the rod position signal is affected over the entire cycle. Analysis of both signals combined indicate a movement of the piston relative to the crosshead. Maintenance decided to take the machine out of service after the spare was started up and found a loose screw connection at the cross head pin.

Efficiency Optimization

One major goal in operating a plant is to optimize the efficiency and maximize the output. Therefore, the whole process as well as every individual machine should be monitored for efficiency losses.

For reciprocating compressors the monitoring of valve function and losses, clearance volumes, flow balance, compression ratio, indicated power, and, most important, the analysis of the gas dynamics using the p-V diagram are the critical parameters to reduce direct operation cost of the machine.

In addition, direct stress measurements like rod load and rod reversal indicate whether the operation of the machine is still in safe limits or if the overall plant output can be increased by adjusting compressor capacity

PV Analysis

•Pressure velocity (PV) analysis is a technique that has proven to be very effective in assessing the condition of reciprocating machinery .

Personal computer technology has significantly reduced the cost of this kind of measurement, and improvements in transducer technology have overcome the technical obstacles such that PV analysis is now available online.

•Dynamic pressure transducers are used to measure the pressure inside the cylinder over the course of the stroke

•This allows the analyst to evaluate the condition of the rings, valves, and packing, while at the same time calculating the dynamic rod load, which is the source of the forces and moments described in the discussion on vibration.

Pressure Traces– Reciprocating

Pressure Volume Curves

The pressure-volume plot (PV plot)

The pressure-volume plot (PV plot) together with the calculated theoretical PV plot, as shown in Figure, is closely related to the polytrophic exponent function. The PV plot is based on measured dynamic pressure values in the cylinder that are plotted against the corresponding calculated

Figure. Left: PV plot showing the four basic compressor cycles. Right: Theoretical PV plot (red) overlying a PV plot. The deviation between the theoretical and actual expansion and compression curves indicate a suction valve leak in this example

Pattern recognition

One proven method for the automatic and "intelligent" evaluation of piston compressors is: Pattern recognition.

The application of a system integrated pattern recognition for reciprocating compressors requires some special considerations to allow the exchange experiences of similar machines. When a new critical state occurs, the monitoring system compares the current pattern with all other existing saved in the database and provides the user with a list by similarity.

Pattern recognition is an accepted analysis procedure that supports passive accumulation of experience and also allows operators to compare most varied damage situations and use the percentage match with previous damage situations to make diagnosis as accurate as possible (Figure 2).

		2 ^{ed} Warning Level	0	0		0	0	0	0	6	D		0	0	Ī
	RMS-Values	1# Warning Level	Õ	0	(Y)	Õ	Õ	Õ	Õ	0	Õ	Õ	Õ	Ŷ	Ī
Culleder		RefCon.	Ŏ	Õ	Ŏ	G	G	G	G	1	G	G	G	Č	t
Cylinder	Abarbar	2 nd Warning Level	Õ	G	Ŏ	Õ	Ŏ	Ŏ	Ŏ	1	5	Õ	Ŏ	Ŏ	t
	Absolute-	1# Warning Level	Ŏ	Ŏ	Ý	ŏ	Ŏ	Ŏ	ă		5	ŏ	Ŏ	Ŷ	t
	Values	RefCon.	Ŏ	Ŏ	Ŏ	G	G	G	G		A	G	G	Ŏ	t
H		Tripp Alarm	B	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	ð		ñ	Õ	Ŏ	Ŏ	t
		Pre Alarm	B	Õ	Ŏ	Ŏ	Ŏ	Ŏ	Ó		ΛŎ	Õ	Ŏ	Ŏ	t
	RMS-Values	2 nd Warning Level	Ŷ	Õ	Ŏ	Ŏ	Ŏ	Õ	Õ	1	tõ	Õ	Ŏ	Õ	t
		1# Warning Level	Ŏ	G	G	G	G	G	G		G	G	GG	Ŏ	t
Cross riead		RefCon.	Ŏ	Õ	Ŏ	Ŏ	Õ	Ŏ	Õ	1	10	Õ	Ŏ	Ŏ	t
	a car	2 nd Warning Level	Ŏ	Õ	Õ	Õ	Õ	Õ	Õ		ň	Ŏ	Õ	Õ	t
	Absolute-	1# Warning Level	Ý	Ŷ	ŏ	ŏ	Ŏ	ŏ	ŏ		ð	ŏ	Ŏ	Ŷ	t
	values	RefCon.	Ŏ	Õ	G	G	G	G	G		G	G	G	Ŏ	t
		Segment No.	1	2	1	4	5	6	7		133	34	35	36	t

Figure 2. Condition Pattern of Vibration Signals

Calculate Power Losses?

1> CH1

2> CC1

198.42

142.52

899.1

899.1

1453.7

1450.3

1109.4

1118.5

78.4

78.4

95

94

16.7

15.0

21.5

18.0

4

27.4

33.2

24.7

30.0

3-26-15 11:35:42

3-26-15 11:37:12

Valve Losses on C2001 B

Faults in Suction Valves and Discharge Valves

Faults in suction valves and discharge valves count among the most frequent reasons for an unplanned outage of reciprocating compressors.

The status inside the compressor can be evaluated directly by permanent measurement of pressure in the cylinder by PV diagram.

Additional condition information on these valves is provided by measurement of vibration in the cylinders, which is analyzed in 36 segments for every crank cycle with each 10 degrees of crank angle and monitored in relation to limiting values

Comparison of a good valve with a damaged valve.

p-V diagram-normal condition

P-v diagram of first and second stage cylinder with properly operating discharge valve

p-V diagram-damaged valve

rel. stroke volume

P-v diagram of first and second stage crank End cylinder with faulty first stage crank End discharge valve

The first-stage p–V diagram is visibly distorted and no longer reaches the target intermediate pressure

Faults in Suction Valves and Discharge Valves

The monitoring system signalled exceeding of the vibration limits in the first stage cylinder and disturbance of the p-V characteristic values of the crank-end compression chamber.

Figure 6 reproduces the vibration characteristics and pressure characteristics recorded at the time of the alarm. There is increased vibration in the cylinder here during almost the entire revolution of the crank, less vibration being evident only within the discharge phase (70 to 180 degrees crank angle) of the crank-end compression chamber.

Compression now rises more steeply and re-expansion is distinctly flatter than before, beginning about 10 degrees later .The changes are even more obvious in comparison with the first and second stage p-V diagrams (Figure 7).

Faults in Suction Valves and Discharge Valves

Figure 6. Crank-End Cylinder Pressure Characteristic and Vibration Characteristic in First Stage Cylinder with a Faulty Crank-End Pressure Valve.

Figure 7. p-V Diagrams (Volume Display) of Crank-End Cylinder Spaces in First and Second Stage with Faulty First-Stage Crank-End Pressure Valve.

Faulty crank-end discharge valve.

There is increased cylinder vibration during almost the entire crank stroke, less vibration being evident only within the discharge region (70° to 180° crank angle) of the crankend compression space. The changes are even more obvious on comparison with the first- and second-stage p–V diagrams.

Vibration signal-damaged valve

Crank-end first-stage cylinder pressure and Vibration characteristics with a faulty crank-end discharge valve.

Faulty Stuffing-Box

131.2 psi 319.0 psi 316.1 psi 553.9 psi

2.9 3.5 4.1 4.7 5.3 5.9 6.4 7.0 7.6 8.2

SP 1. St. CE DP 1. St. CE

Change in

Expansion Curve

1.76 2.3

471.3

435.0

253.8

Figure . Cylinder Pressure Curves for Crank-End Cylinder, Second Stage, With and Without Leakage along the Stuffing-Box Packing, in One Revolution of the Crank (360 Degrees Crank Angle).

> Figure . p-V Diagrams (Volume Display) for Crank-End Cylinder Spaces in First and Second Stage, with Leakage along the Second-Stage Stuffing-Box Packing

Piston Ring Wear

Figure 12. Development of Segments 1, 9, 18, and 27 (Hourly Mean Values) of Rod-Drop Analysis During the Six Weeks Before Shutting Down the Machine.

Figure 13. Cylinder Pressure Characteristics, Rod-Drop, and Vibration in Cylinder 1 in Good Condition

ROD DROP MONITORING

- The piston rod assembly drops during operation due to normal rider band wear .
- Sometimes due to high temperature of the the gas stream , cylinder valve problem, insufficient lubrication for prolonged period can cause drastic reduction in rider band life.
- Replacement of rider bands solely an hours of operation is not the most efficient method

Range

3-4 mm

4-6 mm

5-8 mm

8-10 mm

	Set	Vriable	Description
	1	Extremely high deficiency level	Major mission degradation which can affect other components also
HILAUK	2	high deficiency level	мајог mission degradation or major system damage
	3	average deficiency level	Minor mission degradation, or minor system damage
	4	low deficiency level	Less than minor mission degradation, or minor system damage

Set	Vriable	Description	Range
1	strong deviation	Strong deviation fom normal condition	140-150
2	slightly deviation	slight deviation fom normal condition	135-140
3	less severe operation,	Less deviation fom normal condition	130-135
4	no change	No change fom normal condition	110-130

fuzzy inference systems

The steps performed by fuzzy inference systems when processing inputs are:

1. Compare the input variables with the membership functions of the premise part to obtain the membership values of each linguistic terms this step is called fuzzification

2. Combine the membership values of the premise part to deduce firing strength of each rule using the selected operator

3. Generate the consequence or results of each rule

4. Aggregate the results or consequences to produce a crisp output – this step is called defuzzification

	Set	Membership function	Description	Range
THE R	1	Damage	Immediately replace the component	0-0.25
	2	Caution	Replace in the next opportunity maintenance schedule Before next inspection- less than one year	0.25 - 0.5
	3	Optimum	Can run till next inspection –more than one year	0.5-1
	4	Acceptable	Can run further – more than two years	1

Output Membership

IF-THEN Rules - fuzzy inference system

Rule

Last inspect result		Operating		Maintenance
	AND	Condition	THE N	practice
low		strong deviation		optimum
low		slightly deviation		acceptable
low		no change		acceptable
low		less severe operation		acceptable
average		strong deviation	_	optimum
average		slightly deviation		acceptable
average		no change		acceptable
average		less severe operation		acceptable
high		strong deviation		damage
high		slightly deviation		optimum
high		no change		acceptable
high		less severe operation		acceptable
Extremely high		strong deviation		damage
Extremely high		slightly deviation		damage
Extremely high		no change		caution
Extremely high		less severe operation		caution

SAMPLE 1- Rider Ring Thickness- 5.5mm Temperature- 136C

temperature is 136 deg C ,the compressor Condition in MATLAB tool box output comes out to be 0.562 which means maintenance decision taken should be optimum and compressor can run till next inspection. Hence no maintenance action need to be taken for one year

In this case the rider ring thickness is 5 mm and the operating temperature is 145 deg C ,the compressor Condition in MATLAB tool box output comes out to be 0.418 which means maintenance decision is caution. Replace in the next opportunity maintenance schedule before next inspection-(one year)

Surface Viewer

Making the complex and invisible.....

1 – Sulfidation; 2 – Wet H2S Damage (Bistoring/HIC/SCHC/SSC; 3 – Creap / Strass Rupture; 5 – Polythionic Add Corrosion; 6 – Naphthenic Add Corrosion; 8 – Ammonium Chioride Corrosion; 9 – HCI Corrosion; 11 – Ox/dation; 18 – Caustic Cracking; 20 – Erosion/Erosion Corrosion; 23 – CI SCC; 30 – Short term Overheating / Strass Rupture; 33 – 885F Empiritie/Herite/Dissimiliar/Metal/Word/Cracking; 42 – CO2/Corrosion; 44 – Fuel Ash Corrosion; 48 – Ammonia Strass Corrosion Cracking; 52 – Liquid Metal Empiritement; 66::: Organis-Add/Corrosion; 46:: Corrosion; 46 – Ammonia Strass Corrosion Cracking; 52 – Liquid Metal Empiritement; 66::: Organis-Add/Corrosion; 46:: Corrosion; 47 – Fuel Ash Corrosion; 48 – Ammonia Strass Corrosion Cracking; 52 – Liquid Metal Empiritement; 66::: Organis-Add/Corrosion; 47 – reserved.

Making Corrosion Actionable by Operations

Honeywell Confidential - © 2017 by Honeywell

Honeywell THE POWER OF CONNECTED

Real Time Analytics...Monitor Rates at Multiple Locations

provides a real time quantified picture of unit and piping integrity; transforming your data into knowledge.

- RT corrosion rates in line with measured rate
- Ability to see remaining thickness and cumulative metal loss

IoT and Predictive Maintenance

Rolls Royce uses Engine Health Management (EHM) to track the health of thousands of engines operating worldwide, using onboard sensors and live satellite feeds in real-time.

EHM is a pro-active technique for predicting when something might go wrong and averting a potential threat before it has a chance to develop into a real problem. EHM covers the assessment of an engine's state of health in real time or post-flight and how the data is used reflects the nature of the relevant service contracts.

EHM uses a range of sensors strategically positioned throughout the engine to record key technical parameters several times each flight

ROLLS <u>ROYCE</u>

To sum up

Dr. Trinath Sahoo

More Data doesn 't just let us see more

More data allow us to see **new**

More data allow us to see better

More data allow us to see different